2882. Drop Duplicate Rows
DataFrame customers
Column Name | Type |
---|---|
customer_id | int |
name | object |
object |
Instructions
- There are some duplicate rows in the DataFrame based on the
email
column. - Write a solution to remove these duplicate rows and keep only the first occurrence.
- The result format is in the following example.
Example
Input:
customer_id | name | |
---|---|---|
1 | Ella | emily@example.com |
2 | David | michael@example.com |
3 | Zachary | sarah@example.com |
4 | Alice | john@example.com |
5 | Finn | john@example.com |
6 | Violet | alice@example.com |
Output:
customer_id | name | |
---|---|---|
1 | Ella | emily@example.com |
2 | David | michael@example.com |
3 | Zachary | sarah@example.com |
4 | Alice | john@example.com |
6 | Violet | alice@example.com |
Explanation:
Alic (
customer_id = 4
) and Finn (customer_id = 5
) both use john@example.com, so only the first occurrence of this email is retained.
Submissions
python
import pandas as pd
def dropDuplicateEmails(customers: pd.DataFrame) -> pd.DataFrame:
return customers.drop_duplicates(subset='email', keep='first')
Explanation
Python (Pandas)
Submitted by @noeyislearning
import pandas as pd
: Import the pandas library to work with DataFrames.def dropDuplicateEmails(customers: pd.DataFrame) -> pd.DataFrame:
: Define a function calleddropDuplicateEmails
that takes a DataFramecustomers
as input and returns a DataFrame.return customers.drop_duplicates(subset='email', keep='first')
: Remove duplicate rows based on theemail
column and keep only the first occurrence.